

Andrew MacNeill
AKSEL

Overview

When we first learned about Automation in FoxPro 2.x and Visual FoxPro, it was usually using Word and Excel.
But those are simply two examples. No application is an island anymore. By accessing other COM servers, your
application can become infinitely more powerful. By having other applications access YOUR COM server, you
can concentrate on business logic instead of interface design.

This session uses Microsoft Outlook as both a primary and secondary COM server and discusses the different
ways that Outlook and Visual FoxPro can work together to accomplish a myriad of functions.

The target audience for this session is the Visual FoxPro developer who:

· Has done some basic automation, perhaps using Word or Excel

· Is familiar with the syntax of Visual Basic or VBA code

· Has heard about or built their own COM server

· Is tired of rebuilding the wheel for every application
Code re-use is one of the reasons many developers like Visual FoxPro. The object-oriented features serve
developers well, reducing the code required to perform various functions. Re-usability isn’t limited to code.
Many times when building an application, I pull forms and ideas from other applications, reusing these pieces as
well. Instead of just sticking to existing code, why not consider using an existing application to reduce all your
hard effort?

When deciding to include automation in your app, you have to consider how your users will be using it. If your
application is already established with your users and has a known user interface, it’s probably best to link to
another application to provide additional functionality. In this scenario, you control the interface and you have
complete control over what the user sees.

On the other hand, if you are building a new application that mirrors functionality in an existing office
application, consider manipulating that application to call yours. Training, which should always be a
consideration when building new applications, can be greatly minimized. The amount of work that you have to
spend on the user interface will also be less, freeing you to concentrate on the business logic.

As an end-user application, Outlook is used to:

Send emails

Manage contacts

Schedule Appointments

Manage Tasks

And more

FT-V02
Outlook Automation for Visual FoxPro

Think about the number of applications you may have built that had to do a number of these sames tasks! An
application that deals with tracking people probably could benefit with those people being in Outlook. Outlook
already has sort and grouping functionality, query capabilities, and better yet, it merges with Word easily. An
application that tracks resources or provides scheduling could use Outlook to display calendars, print filled in
schedules as well as Outlook’s conflict resolution features. It could also use Outlook’s Task features to handle
basic task management. All of these things are already handled in Outlook and with a little work can be handled
easily within your application as well.

This session shows you how.

The Outlook Object Model

The Outlook object model starts at the Application level. The Outlook Application object exposes a few
properties that are used to access the rest of Outlook, the most important one is the NameSpace object.

The NameSpace object is a reference to the current Outlook data source or session. It only has one supported data
source which is MAPI. From the namespace object, you can access all of the Folders and items within Outlook as
well as AddressLists.

Items reside within folders. Outlook items include the following:

· Appointments

· Contacts

· DistList (Distribution List)

· Document

· Journal

· Mail Messages

· Meetings

· Notes

· Post

· Remote

· Report

· Task (including requests)
Each item has its own properties and key methods

To create a link to Outlook, the following steps are required:

· Create the Application Object.

· Get a pointer to the current session.

· Find the folder that you want to work with.

· Go to work.
The code to do this is also relatively straight forward:

loApp = CREATEOBJECT(“Outlook.application”)
loSpace = loApp.GetNameSpace(“MAPI”)
loFolders = loSpace.Folders
loItems = loSpace.Folders.Items

The loApp statement creates the Application object. LoSpace returns a reference to the current Outlook session.

Moving through folders with Outlook can be done using the GetDefaultFolder method or by traversing the
Folders collection.

As with most collections, you can specify the name of the folder directly or specify it by index count:

FOR lni = 1 TO loSpace.Folders.Count
 lcName = loSpace.Folders(lni).Name
ENDFOR
Folders are hierarchical so each folder can contain their own set of
folders as well.
FOR lni = 1 TO loSpace.Folders.Count
 loFolders = loSpace.Folders(lni).Folders
 FOR lnSub = 1 TO loFolders.Count
 lcName = loFolders.Folders(lni).Name
 ENDFOR
ENDFOR

In most Outlook sessions, however, it is much easier to use the GetDefaultFolder method which returns the user’s
commonly used folder. This setting is controlled by where the user retrieves messages from.

The GetDefaultFolder method returns the default folder based on a passed parameter:

3 – Deleted Items

4 – Outbox

5 – Sent Items

6 – Inbox

9 – Calendar

10 – Contacts

11 – Journal

12 – Notes

13 - Tasks

loInbox = loSpace.GetDefaultFolder(6)
Every Folder has an Items collection. Items.Count returns the number of items. The Add method creates a
reference to a new item. The item however is not saved until you do something with it.

loItems = loFolders.Items
loNewItem = loItems.Add()

To immediately create user interaction, you can display the item right after you create it.

loNewItem.Display ()
However, when an item is displayed, the user now has control over it, meaning they can destroy, delete or send it
without giving your application the time to react.

When you have finished working with an item, you can either Save or Send it. Sending is an action reserved for
those items that have a communication context. For example, you don’t Send a contact, you save a contact.
Likewise, you usually wouldn’t save a message; you would send it.

Common Item Methods

All items have standard methods that can be used for moving items around.

The Delete method deletes an item. Deleted items are placed in the Deleted Items folder. To permanently delete
items, delete items that are in the Deleted Items folder.

TrashFolder = loSpace.GetDefaultFolder(3)
lnItems = trashfolder.items.count
For lni = l TO lnItems
 Trashfolder.items(0).delete()
Endfor

Call the Copy method to create a copy of the message.

myCopy = loItem.Copy()
The Move method then moves the message into another folder.

SaveFolder = loSpace.Folders("My Mail").Folders("Important Messages")
MyNewMsg = myMsg.Copy
MyNewMsg.Move SaveFolder

Note that the SaveFolder isn't a string but a pointer to the desired folder.

Attachments

Attachments are listed in an item's Attachments collection. You can add an attachment as a shortcut to the item, a
direct attachment or as an embedded Outlook object.

myNewMsg = myFolder.Items.Add()
myNewMsg.Attachments.Add("C:\MYAPP.ZIP",1,1,"Compressed Application Zip
File")
myNewMsg.Attachments.Add("\\aksel1\akseld\Info.doc",2,1,"Link to
Information document")

The first Attachment is the actual file. The second attachment is a shortcut to the file.

The parameters to the Add method are displayed below.

Parameter Name Description
Source File Full path name of attachment, URL or object being

attached.
Type Type of attachment:

1 – Separate file Attachment
4 – Link or shortcut to attachment

5 – Embedded object
Position Position in body where attachment goes. A value of 0

does not send the document.
DisplayName Name that will be displayed to the user

The add method only requires one parameter but using all 4 provides more functionality.

When receiving a message with attachments, call the SaveAsFile method to copy the attachment to another
location. To remove the attachment after copying, call the Delete method.

FOR EACH loAttachment IN loMsg.Attachments
 IF loAttachment.Type = 1
 loAttachment.SaveAsFile("Downloads\"+loAttachment.FileName)
 ENDIF
ENDFOR

The FileName property returns the short filename. The PathName returns the full path to the attachment. The
DisplayName is the name that was displayed in the message.

The Message Item

The table below displays most of the commonly used properties for a message item.

When you create a message, the most likely method to use is Send. However, if you call Save, it will save a copy
of the message.

Property Description
Subject Name of the task
SenderName Name of sender
Body Content of message
Attachments Attachments collection (see below)
Recipients Recipients collection (see below)
Importance Importance Flag

0 – Low
1 – Normal
2 – High

Sent Logical value. Identifies if message was sent (always
True for received messages)

SentOn Date and time message was sent
ReceivedTime Date and time message was received
CC / BCC Name of CC and BCC names. The actual individuals

come from the Recipients collection.
Companies Name of company associated with item (free-form).
ConversationIndex
ConversationTopic

The topic and index of the conversation (see below).

CreationTime Date and time message was created
EntryID Unique identifier for message
ExpiryTime Date and time message can be declared expired and

can be deleted.
FlagStatus Flag Status for message.

0 – No Flag
1 – Completed
2 – Flag Marked

FlagDueBy Date and time flag is due. FlagStatus must be 1 or 2
for this property to be valid.

FlagRequest Requested action for message. Free-form text
HTMLBody HTML version of the body. Changing this will

change the body property.
ReplyRecipients Collection of recipients who will receive the message

if you reply to it.
Sensitivity Sensitivity of message.

0 – Normal
1 – Personal
2 – Private
3 – Confidential

Unread Logical value indicating if message has been read or
not.

VotingOptions
VotingResponse

Voting options (see below)

The ConversationTopic and Index properties can be used to group similar messages together. When a message is
replied or forwarded, the subject is updated with the words "RE:" or "FW:". The ConversationTopic property
however maintains the original topic. So in the case of a series of messages as shown in figure 1, the conversation
topic is always the same. The ConversationIndex property is a string. It is supposed to contain the Index of the
conversation. However, in Visual FoxPro, the string is made up of unreadable characters. New messages return an
empty ConversationIndex.

Why is the ConversationTopic property important? A message may not have the same Subject and yet belongs to
the same conversation. Outlook does not make it easy for a user to retrieve messages by conversation, however,
Visual FoxPro can!

LOCAL ln
ln = 1
DIMENSION laConversations(ln)
LaConversations(ln) = ""
FOR EACH loMsg IN myFolder.Items
 IF ASCAN(laConversations,loMsg.ConversationTopic)=0
 DIMENSION laConversations(ln)
 laConversations(ln) = loMsg.ConversationTopic
 ln = ln+1
 ENDIF
ENDFOR
MESSAGEBOX("You are having "+LTRIM(STR(ALEN(laConversations,1)))+"
conversations in this folder.")

Replying and Forwarding Messages

Call the Reply method to create a message that has all of the recipient information filled in based on the current
message.

Call the Forward method to create a message that contains all of the content of the current message.

When replying or forwarding, the original message is/is not included in the body. Therefore, be careful of the
changes made to the Body property. They may affect the original message.

newMsg = loMsg.Reply
newMsg.Body = "I agree 100%." && This overwrites the original message
newMsg.Send()
newMsg = loMsg.Reply

newMsg.Body = "I agree 100%."+ CHR(13) + newmsg.body
newMsg.Send()

The second example maintains the body of the original message.

Recipients

When sending and receiving messages, the Recipients collection contains any person receiving the message,
including any CC (carbon copys) or BCCs. Change the Type property of the recipient to set a recipient as a
particular type. The default type is 1 (which is the To column). CCs and BCCs are types 2 and 3 respectively.

Once a recipient has been added, call the Resolve method to verify the person. The Resolve method checks the
address book for the recipient, ensuring that the message can be sent.

newMsg = myFolder.Items.Add()
newMsg.Subject = "Welcome!"
oSendTo = newMsg.Recipients.Add("Andrew MacNeill")
oSendTo.Type = 1 && To
IF NOT oSendTo.Resolve()
 MESSAGEBOX("Recipient is invalid")
ENDIF

If you are using Internet email addresses, the Resolve method can be bypassed, as it will be used automatically
when sending the message.

oSendTo = newMsg.Recipients.Add("testmessage@aksel.com")
oSendTo.Type = 2
newMsg.Send()

When reading messages, the Recipients collection shows all of the people who received the message. Each
Recipient in the collection has thee properties: Name, Address and Type. Other Recipient properties are listed
below.

Property Description

Name Displayed name of the recipient

Address Email address of the recipient

AddressEntry Pointer to the AddressEntry object in the AddressList
collection (see below).

DisplayType Nature of the recipient:

0 – User

1 – Distribution List

2 – Forum

3 – Agent

4 – Organization

5 – Private Distribution List

6 – Remote User

Resolved Logical value indicating if name was resolved or not.

TrackingStatus Tracking status of the message.

0 – No Tracking

mailto:testmessage@aksel.com

1 – Track Delivered

2 – Track Not Delivered

3 – Track Not Read

4 – Track Recall Failure

5 – Track Recall Success

6 – Track Read

7 – Tracking Replied

If set to other than 0, tracking messages will be sent
to the sender as different information is received.

Type Type of recipient.

0 – Originator

1 – To

2 – Carbon Copy

3 – Blind Carbon Copy

Contacts

The Contact Item represents a placeholder for any information you want to track about a person. For a single
contact, you can store 3 mailing addresses, 3 e-mail addresses, 19 different contact numbers and many more
pieces of personal information. Most of the fields are well-named but they tend to get a little long (see the next
table for a list of commonly used contact fields).

Property Description
FirstName First name of the contact.
LastName Last name of the contact.
FullName Automatically combines firstname and lastname

properties.
CompanyName Company name.
MailingAddress
BusinessAddress
HomeAddress
OtherAddress

The address including street, city, state, zip code and
country, if entered.

xxxxAddressStreet
xxxxAddressCity
xxxxAddressState
xxxxAddressPostalCode
xxxxAddressCountry

Any component of the address where xxxx is
Mailing, Business, Home or Other.

BusinessFax
BusinessTelephoneNumber
Business2TelephoneNumber
HomeTelephoneNumber
Home2TelephoneNumber
MobileTelephoneNumber

Various telephone number fields. Note the lengths of
the properties are fairly long which makes it very
easy to misspell.

Title Fields used to identify position or company

Department
Account

information.

Birthday Birth date in Date/Time format.
Body Unlimited text similar to a memo field.

Appointments and Calendars

The Appointment Item is the Outlook item that appears in the Calendar views.

Property Description
Subject The title of the meeting
Body Details of the appointment
AllDayEvent Logical field indicating if event is an all-day event.
BusyStatus Numeric field indicating how the appointment

appears. Values are:
0 – Free
1 – Tentative
2 – Busy
3 – Out of Office

Duration The duration (in minutes) of the appointment.
Start The start date and time of an appointment.
End The end date and time of an appointment.
Importance A numeric value indicating the importance of an

appointment. Values are:
0 – Low
1 – Normal
2 – High

IsOnlineMeeting Logical field indicating if meeting is online. This
doesn't mean anything unless you decide to use it.

IsRecurring Logical field indicating if item is a recurring
appointment (see below).

Location The location of the meeting.
MeetingStatus Numeric value indicating the status of the

appointment. By setting the MeetingStatus, you can
make an appointment show on a network calendar.
Values are:
0 – Non Meeting
1 – Meeting
2 – Meeting Cancelled
3 – Meeting Received

Organizer Returns the name of the Organizer of the
appointment.

Scheduling Meetings

To schedule a meeting, you must send the Appointment item to the appropriate recipients as well as Save it.

Use the Recipients collection to schedule a meeting with participants. The Type property identifies whether an
attendee is required (1), optional (2), the organizer (0) or a resource (3).

myAppt = oCal.Items.Add()
myAppt.Subject = "DevCon Party"
myAppt.Start = CTOT("11/25/2000 17:00")
myAppt.Duration = 120 && two hours
oPerson = myAppt.Recipients.Add("Randy Brown")
oPerson.Type = 1
oPerson = myAppt.Recipients.Add("Steve Black")
oPerson.Type = 1
oPerson.Resolve()
oPerson = myAppt.Recipients.Add("Calvin Hsia")
oPerson.Type = 2
oPerson.Resolve()
oRoom = myAppt.Recipients.Add("DevCon Attendees")
oRoom.Type = 3
oRoom.Resolve()
myAppt.MeetingStatus = 1
myAppt.Send()
myAppt.Save()

When you add recipients, call the Resolve method to ensure that the names are found properly in the Outlook
Address book. If the Resolve method isn't called, the meeting request may be delayed in sending.

In the above example, the last Recipient isn't a single person: it's a Distribution list. As long as these names can
be resolved within the current AddressList, the recipient is considered valid. If a recipient isn't valid, then the
message will not be sent.

Set the MeetingStatus property to 1 before sending the meeting request. The default property value is 0 which
means that requests will not be sent to attendees. To cancel the meeting, set the property to 2 and send the
message again.

Once the meeting has been sent, refer to the ResponseStatus property to see how the attendees have responded.

Call the Remove method in the Recipients collection passing it the index number of the recipient to remove from
the list.

myAppt.Recipients.Remove(3)
After identifying the recipients, use the Appointment properties identified in the table below to differentiate
between them.

OptionalAttendees Strings that display the Display Name of the
attendees. Although you can modify these properties,
use the Recipients collection to add and remove
participants.

RequiredAttendees
Resources
ResponseStatus The response to the meeting requests. Once one

person responds, this property is set.
0 – No response received
1 – Organized
2 – Tentative
3 – Accepted
4 – Declined
5 – Not Responded

Tasks

In Outlook, a Task is a message that provides details about something that needs to be done. If you work on a
project, there might be several tasks that need to be done. If you work alone, there might be several projects (all
containing several tasks) that you are working on.

Each task has its own set of properties that can be used to manage it. Outlook can even be used to manage a mini-
project. Even if you already use Microsoft Outlook to manage your tasks, you might not be aware of all of the
properties (most of them don't show up when looking at a task). The table below lists the various properties,
starting with the standard properties.

Property Description
Subject Name of the task
StartDate Date the task was started
DueDate Date task is due
Status Status of the task
Priority High/Medium/Low
PercentComplete % of the task that has been completed
Body Notes for the task
ReminderSet Logical field indicating if task has a reminder set for

it.
ReminderTime The date and time that the reminder will be played.
ReminderMinutesBeforeStart The number of minutes the reminder should occur

before the start of the appointment
ReminderOverrideDefaults Logical field indicating if task has its own settings

(instead of using the default Outlook settings).
ReminderPlaySound
ReminderSoundFile

PlaySound is a logical field indicating if the reminder
should play a sound.
SoundFile is the full path name of the WAV file to be
played.

DateCompleted Date the task was completed,
TotalWork
ActualWork

A numeric field representing the number of minutes
the task took. Outlook converts the time
automatically to minutes, hours or days depending on
the duration.

Mileage String or numeric used to represent mileage required
to perform task.

BillingInformation Text field for additional billing-related information.
Companies Text field for additional company related

information.
Role Text field for the role the user is playing in the task.
TeamTask Logical field indicating if Task is being performed by

a team.
Owner Indicates who is the owner of the task.
Ownership Read-only numeric value reflecting the state of the

task.
0 – New Task
1 – Delegated Task
2 – Own Task

Categories Comma-delimited list of categories assigned to task.
Complete Logical field indicating if task is complete. If True,

PercentCompleted is automatically 100%.
DelegationState Read-only numeric value reflecting how the task was

delegated.

0 – Task Not Delegated
1 – Delegation Status Unknown
2 – Accepted
3 – Declined

Delegator Read-only string returning the name of who
delegated the task.

Recipients Collection of other Outlook users who will receive
the assigned task (see Recipients).

Delegating Tasks

You can also delegate tasks using Outlook. When you delegate a task, you are, in effect, sending them a message
with the details of the task, asking them to take ownership of it.

The following code delegates a task to another user:

loTask = oTasks.Item(1)
loTask.Recipients.Add("John Smith")
loTask.Assign()
loTask.Send()

When a task has been delegated, the DelegationState property is immediately updated to 1. This value indicates
that Outlook is unaware whether or not the person has actually accepted the delegation of this task. If the assignee
(in this case, John Smith) refuses the assignment, the DelegationState is automatically updated to 3. If accepted, it
is set to 2.

The following code returns a list of tasks, waiting to be assigned:

FOR EACH loTask IN oTasks.Items
 IF loTask.DelegationState = 1
 ? loTask.Subject
 ENDIF
ENDFOR

If you plan on assigning a task to a person and then decide against it, call the CancelResponseState method to
return the task back to a simple task.

loTask.Assign()
loTask.CancelResponseState()
loTask.Save()

Using Defined Properties

If the fields provided still don't meet your requirements, you can create user-defined fields. User-defined fields
are stored with each item individually. One contact may have the field where others may not.

This code creates a custom field named BalanceDue for a contact.

loContact = loCustomers.Item(1)
loContact.UserProperties.Add("BalanceDue",1)

UserProperties is a collection within each item. It has a Count property so you can see how many custom fields
are attached to an item. What's particularly useful about the UserProperties collection is that if you attempt to add
a field that already exists, Outlook doesn't error out.

The first parameter to the Add method is the name of the custom field. The second parameter is the type of field
you are adding. Table 3 shows a list of different field types.

Type Description

1 Free-form text
3 Number
5 Date/Time
6 Logical value.
7 Duration (defaults to minutes) entered as a number.
11 Keywords
12 Percent
14 Currency
18 Formula
19 Combination (similar to text).

You can specify that a custom field must be one of the types above.

Set the Value property to update a custom field.

loContact.UserProperties("BalanceDue").Value = 500.50
Call the Delete method to delete a user property.

loContact.UserProperties("BalanceDue").Delete()

Finding Information

The Outlook object model makes it easy to navigate through the contacts folder. The GetFirst and GetLast
methods return references to the first and last items in the folder respectively. After moving to the first or last
item, call GetNext or GetPrevious to move up and down through the folder.

Call the Find method to locate a contact. Pass the criteria as the only parameter.

loFound = loCustomers.Items.Find("[LastName]='MacNeill'")
The syntax for writing filters is property name, surrounded with square brackets and the search term. You can
create more complex search criteria with the keywords AND, OR and NOT.

loFound = loCustomers.Items.Find("[MailingAddressState]='CA' AND
[BalanceDue]>500")

You can combine user-defined properties and regular properties in the search condition. Outlook will parse the
search string and find the correct result. If there were no items matching the search criteria, the Find method
returns NULL. Call the FindNext method to find the next occurrence based on your current item position.

loFound = loCustomers.Items.Find("[BusinessAddressState]='CA'")
DO WHILE NOT ISNULL(loFound)
 ? loFound.FullName
 loCustomers.Items.FindNext()
ENDDO

Displaying Information

Updating information in Outlook invisibly is useful in Outlook however, you can also access methods to display
information. Displaying is done with the help of the Explorer and Inspector collections. An Explorer, like its
Windows counterpart, is used to display lists of information. For example, a list of messages or contacts is
displayed in Outlook with an Explorer. When you double-click a contact, it appears in a form that is controlled by
an Inspector.

The Application object has ActiveInspector and ActiveExplorer properties to help identify what view the user is
currently looking at. However, Outlook is generally a modeless application and users can have multiple windows
open at once. You can identify the inspector or explorers with GetInspector and GetExplorer methods as well.

Inspector and Explorer objects have some common properties and methods:

Caption – returns the form caption displayed to the user

Close – closes the form

Display – displays the form or refreshes the view

Activate – activates the form

The Explorer object also has CurrentView and CurrentFolder properties. CurrentFolder returns an object pointer
to the current folder being viewed. CurrentView is the name of the view being displayed. For example, Inbox
messages are usually viewed with the “Messages” or “Unread Messages” view. Contacts may be viewed with
“Contact Cards” or “Phone List” views.

The Inspector object has a CurrentItem property which returns the current item being looked at.

Accessing VFP from Outlook
So far, I have concentrated on automating Outlook from within our existing application. That approach assumes
that you already have an application built, users are comfortable with it and you are basically “adding”
functionality”.

Consider the new project. Building Outlook-like features with their own interfaces is a massive project on its
own. If you can make use of Outlooks’ features and then add functionality to them, you can build a powerful
application with an interface users already know.

In addition, training can become a breeze as you are simply extending their knowledge of an existing application.

Experienced User: Well, you need to learn our Employment Management
resource system.
New User: Should I schedule training?
EU : Do you know MS Outlook?
NU : Yes.
EU: End of discussion.

The first step in accessing VFP from Outlook is to build a COM server that will be accessed from Outlook.

For this example, we are going to build a simple COM server application and build it up from there. Our COM
server is going to act like an Audit Trail for certain types of activities in Outlook.

In addition, we are going to build some special forms for our users that include the information we need to track.

Here is the basic code for the first version of our COM Server. It has a single public method named WriteLog that
uses the VFP function STRTOFILE to place information into a log file.

DEFINE CLASS OutTrack AS custom OLEPUBLIC
Name = "OutTrack"
PROCEDURE writelog
 LPARAMETERS tcInfo
 IF EMPTY(tcInfo)
 tcInfo = ""
 ENDIF
 =STRTOFILE(tcInfo+" "+TTOC(DATETIME())+;
 " "+SYS(0)+CHR(13),"\OUTLOOK.LOG",.T.)
ENDPROC
ENDDEFINE

Create a project named OUTCOME and add this as program MAIN. Build the project as a DLL.

To test the code, try the following code:

X = createobject(“Outcome.OutTrack”)
x.WriteLog(“My Outlook automation tracker”)

Building the Customized Form

Our next step is to build the Customized Form.

Under the Tools menu, select Forms->Design Form. The Outlook form designer will appear.

Outlook has a number of built-in controls that are similar to their Visual FoxPro counterparts. The Outlook
controls are also available to you in Visual FoxPro! They are the ActiveX controls named Microsoft Forms.
Right-click on the Control Toolbox and select Custom Controls to add your own favorite ActiveX controls, such
as a ListView or TreeView.

When you right-click on a control in the Outlook form designer, there are two menu options named Properties.
The first one displays a dialog with only the basic properties on it. The second one, named Advanced Properties,
displays a Property Sheet where changes may be made to all of the properties. The standard Properties dialog has
three tabs for setting basic properties like the name and position as well as providing basic validation.

Clicking the Choose Field button displays a list of "grouped" properties (such as Commonly used fields). Many
of the controls in an Outlook form have automatic features. For example, the Categories button in the Contact
form displays a dialog where users may identify the categories for a contact. Clicking the Choose Field button for
a Command button displays a list of the dialogs that may be called when the user clicks that button. Along with
Categories, you can display the Confirm Address or Name dialog for Contacts or the Add Recipients for mail
messages.

Once the custom form is designed, it needs to be saved. Unlike applications, customized forms cannot be
compiled to hide their logic. To protect the design from being changed by others, click on the Properties Tab (see
figure 5). Check the box marked Protect Form Design and set the password. This ensures no one will be making
changes except you.

The Properties tab in the Form Designer makes it easy to add version and protection to your new form.

Control the related forms users see by changing the settings on the Actions tab. You can also create custom
actions that appear on the menu to display other forms and information.

Publishing the Form

Select Save from the File menu to save the form for the currently selected item only. To make the form available
for other Outlook items, select Publish Form from the Forms submenu on the Tools menu.

Forms may be published in individual folders or to a Personal Forms Library. When published to the individual
folders, the forms will be automatically installed for anyone who opens the form. In the Personal Forms library,
they are available only to you.

Customizing Outlook Events

Using forms is only one way of customizing the user's Outlook experience. It can also be time-consuming.
Designing individual forms is not the way to reduce your development time. Instead, consider changing the way
Outlook reacts behind the scenes.

To do this in Visual FoxPro 6.0 (and 5.0), we need to use Visual Basic to build the initial application that will call
Outlook. This application also informs Outlook to use its special methods. These methods (in the Visual Basic
application) will call our COM server to do the real work.

In Visual Basic, create a new Project. This new project needs to reference the Microsoft Outlook 9.0 Object
Library. Select References from the Project menu and select the library. This tells VB that this object library is
part of the application.

Then in either the form or the main subroutine, place the following code:

Public WithEvents myOlApp As Outlook.Application
Public Tracker
Private Sub Form_Load()
Set myOlApp = New Outlook.Application
Set Tracker = CreateObject("Outcome.outtrack")
End Sub
Private Sub myOlApp_ItemSend(ByVal Item As Object, Cancel As Boolean)

' Item.Body = Item.Body & Chr(13) & "Message updated by My Test
Application"
Tracker.WriteLog ("Item Sent: " & Item.Body)
'better version
If Tracker.SendItem(Item) = False Then

 Cancel = True
End If

End Sub

The first part of this code

Public WithEvents myOlApp As Outlook.Application
creates an object named myOlapp which is defined as the Outlook application (similar to VFP's CreateObject
statement). The WithEvents clause is crucial here because this notifies Outlook that the VB application has
updated Outlook events in it.

The event method myolapp_ItemSend is a direct copy of the ItemSend method we call when attempting to send a
message. This method is passed an Item and a Cancel property. If the method code sets the Cancel variable to
True, then the Outlook item will not be sent.

In order to use this application, we actually need to instantiate the objects. This code is usually placed at the first
call of the program:

Set myOlApp = New Outlook.Application
Set Tracker = CreateObject("Outcome.outtrack")

Following the Process

When deploying this application, all that is needed is to replace the user's Outlook icon with the VB application
icon. After that, the application runs as follows:

When the user starts the application, Outlook is started.

Whenever the user sends an item, the VB method is then executed.

The VB method calls our VFP server, which then logs the information and performs additional functions.

Next Steps

In the above example, we simply added code for sending an item. In a larger application, we might track
individual items including saving contacts, scheduling appointments and more.

Uses in Visual FoxPro 7

All of the code in this session could be done in either VFP 6 or 7. VFP 7 introduces use to some more powerful
functions. IMPLEMENTS and EVENT HANDLER.

Implements is great except that you have to provide the definitions for all of the implemented Methods. Note that
there can be a LOT of methods in this code.

DEFINE CLASS oOutlook as Custom
 IMPLEMENTS Application in "Outlook.application"
PROCEDURE application_Get_session
PROCEDURE application_Get_application
PROCEDURE application_Get_answerwizard
PROCEDURE application_Get_class

PROCEDURE application_Get_assistant
PROCEDURE application_Get_comaddins
. . .
PROCEDURE Application_CreateItem (ItemType) as Object
PROCEDURE Application_CreateItemFromTemplate (tmppath,Folder) as object
PROCEDURE Application_CreateObject (objName) as object
pvarResult As Variant, pexcepinfo As EXCEPINFO, puArgErr As Numeric)

ENDDEFINE

Lo = Createobject(“Outlook.application”)
Los = CREATEOBJECT(“oOutlook”)
? EVENTHANDLER(lo, los)

Please note that the above code works for COM objects such as recordsets and it should also work with Visual
FoxPro 7 based on the beta documentation.

Conclusion

One of the goals of this session is to open developers' eyes to the possibilities of using other applications in
conjunction with Visual FoxPro. As we have seen, there are a number of different ways to accomplish it. Our
application can control what the user does or we can have the user control it, ensuring our application still does
exactly what it needs to do.

As you build your solutions, drop me a line and show me what you’ve done : Andrew@aksel.com.

mailto:Andrew@aksel.com

